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The nature of mathematics can be traced from ancient history of 

mathematics to contemporary one. The word "mathematics"
1
 comes from the 

Greek “máthema” which means science, knowledge, or learning; and 

“mathematikós” means "fond of learning". The invention of printing has largely 

solved the problem of obtaining secure texts and has allowed historians of 

mathematics to concentrate their editorial efforts on the correspondence or the 

unpublished works of mathematicians. The achievements of prehistoric 

mathematics and the flowering of Pythagorean have significant evidences to trace 

the nature of mathematics. While the challenge of non-Euclidean geometry to 

Euclidean geometry has some impacts to the development of contemporary 

mathematics. 

A. Ancient Mathematics  

For over a thousand years
2
--from the fifth century B.C. to the fifth century 

A.D.--Greek mathematicians maintain  a  splendid  tradition  of  work  in  the exact  

19 
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sciences: mathematics, astronomy, and related fields. However, the exponential 

growth of mathematics means that historians are able to treat only the major 

figures in any detail. In addition there is, as the period gets nearer the present, the 

problem of perspective. Mathematics, like any other human activity, has its 

fashions, and the nearer one is to a given period, the more likely these fashions are 

to look like the wave from the past to the future. For this reason, the writer needs to 

have relevant references to assess the essence of the history of ancient mathematics. 

1. Prehistoric Mathematics 

Sumerian civilization
3
 flourished before 3500 BC, an advanced civilization 

building cities and supporting the people with irrigation systems, a legal system, 

administration, and even a postal service. Writing developed and counting was 

based on a sexagesimal system, that is to say base 60. Around 2300 BC,  the 

Akkadians
4
 invented the abacus as a tool for counting and they developed methods 

of arithmetic with addition, subtraction, multiplication and division. Around 2000 

BC, Sumerians had developed an abstract form of writing based on cuneiform i.e. 

wedge-shaped symbols. Their symbols were written on wet clay tablets which were 

baked in the hot sun and many thousands of these tablets have survived to this day.  

The Babylonians
5
 appear to have developed a placeholder symbol that 

functioned as a zero by the 3rd century BC, but its precise meaning and use is still 
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uncertain. They had no mark to separate numbers into integral and fractional parts 

as with the modern decimal point. The three-place numeral 3 7 30 could represent: 

a. 
0 1 2

3 7 30 3 7 30 1
3730 3

60 60 60 1 60 360 8
        

b. 2 1 03730 3 60 7 60 30 60 3 3600 420 30 10,800 420 30 11,250x x x x           

c. 1 0 1 1 1
3730 3 60 7 60 30 60 180 7 187

2 2
x x x         

 

Berggren, J.L., 2004, describes that the Greeks divided the field of 

mathematics into arithmetic i.e. the study of multitude or discrete quantity and 

geometry i.e. the study of magnitude or continuous quantity and considered both to 

have originated in practical activities. Proclus
6
, in his Commentary on Euclid, 

observes that geometry, literally, “measurement of land,” first arose in surveying 

practices among the ancient Egyptians, for the flooding of the Nile compelled them 

each year to redefine the boundaries of properties. Similarly, arithmetic started 

with the commerce and trade of Phoenician merchants. Some hints
7
 about the 

nature of early Greek practical mathematics are confirmed in the arithmetic 

problems in papyrus texts from Ptolemaic Egypt. Greek tradition
8
  was much like 

the earlier traditions in Egypt and Mesopotamia; however, its development as a 

theoretical discipline was a distinctive contribution to mathematics. 
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While the Mesopotamians
9
 had procedures for finding whole numbers a, b, 

and c for which 2 2 2a b c   (e.g., 3, 4, 5; 5, 12, 13; or 119, 120, 169). Greeks 

came a proof of a general rule for finding all such sets of numbers called 

Pythagorean triples (Figure. 1) 

 

 

Figure 1: Pythagorean triples. 

 

If one takes any whole numbers p and q,  both being even or both odd,  then  

a = (p 2 - q 2)/2, b = pq, and c = (p 2 + q 2)/2. For Mesopotamians it appears to be 

understood that the sets of such numbers a, b, and c form the sides of right 

triangles, but the Greeks proved this result by Euclid in Element. The transition 

from practical to theoretical mathematics initiated by Pythagoras by establishing 

that all things are number and any geometric measure can be associated with some 

number. 

2. The Flowering of Pythagoreans 

                                                 
9
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Pythagoras of Samos
10

 is often described as the first pure mathematician. 

He is an extremely important figure in the development of mathematics yet we 

know relatively little about his mathematical achievements. The society which he 

led, half religious and half scientific, followed a code of secrecy which certainly 

means that today Pythagoras is a mysterious figure. Pythagoras held that at its 

deepest level, reality is mathematical in nature. Pythagoreans
11

 represents a 

coherent body of mathematical doctrines believed that number rules the universe. 

They made no distinction between mathematics and physics and concern with the 

study of properties of counting numbers.  They believe all measurements could be 

expressed in terms of natural numbers, or ratios of natural numbers. They develop 

geometric theorems and insist that mathematical ideas required proofs. They think 

numbers had concrete representations as figures of point e.g. square numbers, 

triangular numbers, etc. Posy
12

 points out three important Pythagorean beliefs: (1) 

they agree with Babylonian assumption of commensurability that any geometric 

measurement will be some rational multiple of the standard unit; (1) they think that 

space is ultimately discrete or separable that there is nothing between 1 and 2 and 

everything had to have atomic parts; and (3) they believe that continuity implied 

infinite divisibility.  

 O’Connor, J.J and Robertson, E.F., 1999, note that in the British museum, 

it was found one of four Babylonian tablets, which flourished in Mesopotamia 

between 1900 BC and 1600 BC, which has a connection with Pythagoras's 
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theorem. The document elaborates the finding of the breath of a rectangle in which 

its length and diagonal hold, as the following: 

4 is the length and 5 the diagonal. What is the breadth ? 

Its size is not known.  

4 times 4 is 16.  

5 times 5 is 25.  

You take 16 from 25 and there remains 9.  

What times what shall I take in order to get 9 ?  

3 times 3 is 9.  

3 is the breadth.  

 

Jones R.B.(1997) exposes that for Pythagoras the square on the hypotenuse 

would certainly not be thought of as a number multiplied by itself, but rather as a 

geometrical square constructed on the side. To say that the sum of two squares is 

equal to a third square meant that the two squares could be cut up and reassembled 

to form a square identical to the third square (see Figure 2). 

 

 

 

                                                                   ┘  

  

 

 
Figure 2: Commensurability of Pythagoras 
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Pythagoras
13

 held that all things are number and any geometric measure can 

be associated with some number as the following examples: 

a. the length of a given line is said to be so many feet plus a fractional part;  

b. it breaks down for the lines that form the side and diagonal of the square;  

c. if it is supposed that the ratio between the side and diagonal may be 

expressed as the ratio of two whole numbers, it can be shown that both of 

these numbers must be even and this is impossible,  

d. there is no length that could serve as a unit of measure of both the side and 

diagonal;  

e. the side and diagonal cannot each equal the same  

 

3. Euclidean Geometry 

 

Around 300 BC
14

, Euclid was studying geometry in Alexandria and wrote a 

thirteen-volume book that compiled all the known and accepted rules of geometry 

called The Elements. Euclid
15

 believes in absolute separation of discrete 

mathematics and magnitudes. Of the Element, for example, Books 5 and 6 state the 

theory of proportion for magnitudes, while Book 7 states the theory of proportion 

for numbers. In these Elements, Euclid attempted to define all geometrical terms 

and proposed five undefined geometric term that are the basis for defining all other 

geometric terms as follows: “point”, “line”, “ lie on”, “ between”, and 
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“congruent”. Because mathematics is a science where every theorem is based on 

accepted assumptions, Euclid first had to establish some axioms with which to use 

as the basis of other theorems.  

Euclid uses five axioms as the 5 assumptions, which he needs to prove all 

other geometric ideas. The use and assumption of these five axioms
16

  is what it 

called something to be categorized as Euclidean geometry. The first four of 

Euclid’s axioms
17

 are fairly straightforward and easy to accept, and no 

mathematician has ever seriously doubted them. The first four postulates18 state 

about straight line that may be drawn from any two points; any terminated straight 

line that may be extended indefinitely; a circle that may be drawn with any given 

center and any given radius; and all right angles that are congruent. Explicitly, 

those postulates
19

 are as follows: 

Postulat I 

 For every point P and for every point Q not equal to P there exists a unique line l  

that passes through P and Q. 

 

Postulate II 

For every segment AB and for every segment CD there exists a unique point E  

such that B is between A and E and segment CD is congruent to segment BE.  

 

Postulate III 

For every point O and every point A not equal to O there exist a circle with center 

O and radius OA. 

 

Postulate IV 

All right angles are congruent to each other. 
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The first postulate is sometimes expressed informally by saying “two points 

determine a unique line”. The second postulate is sometimes expressed informally 

by saying “any segment AB can be extended by a segment BE congruent to a given 

segment CD”. In the third postulate, Euclid had in mind drawing the circle with 

center A and radius r, and this postulate tell us that such a drawing is allowed 

(Figure 3).  

 

Figure 3:  Euclid’s circle 

The fourth postulate expresses a sort of homogeneity and provides a natural 

standard of measurement for angles. The fifth or the last postulate listed by Euclid 

stands out a little bit. It is a bit less intuitive and a lot more convoluted. It looks 

like a condition of the geometry more than something fundamental about it. The 

fifth postulate is (see Figure 4):  

Postulate V 

If two straight lines lying in a plane are met by another line, and if the sum of he 

internal angles on one side is less than two right angles, then the straight lines will 

meet if the extended on the side on which the sum of the angles is less than two 

right angles.  
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       Figure 4: The Fifth Postulate of Euclides 

 

The Fifth Postulate of Geometry (Parallel Postulate) means that if a straight 

line falling on two straight lines makes the interior angles on the same side less 

than two right angles and if  the two straight lines are produced indefinitely, they 

will meet on that side on which the angles less than two right angles. From this 

postulate, we may have a question what is the criterion for line l to be parallel to 

line m?  

 

 

 

 

 

 

   Figure 5: Criterion for parallel line 
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Euclid suggested drawing a transversal (Figure 5) , i.e., a line t that intersects both 

l and m in distinct points, and measuring the number of degrees in the interior 

angles 1) and 2) on one side of t.  

4. Non-Euclidean Geometry   

Pythagoras
20

 was the first who inclined to regard number theory as more 

basic than geometry. The discovery of in-commensurable ratios presented them 

with a foundational crisis not fully resolved until the 19th century. Since Greek
21

, 

number theory, which concerns only whole numbers, cannot adequately deal with 

the magnitudes found in geometry. Because of his belief that all things are 

numbers it would be a natural task to try to prove that the hypotenuse of an 

isosceles right angled triangle had a length corresponding to a number. For it found 

the irrational numbers, it can be proved that commensurability is false. To proof 

that commensurability is false we can use reductio ad absurdum procedure.  

Posy, C., 1992, indicates that Elements is full of difficulties due to absolute 

separation resulted in a great deal of repetition and there are actual gaps and 

perceived gaps. “If we continuously mark off segment AB in the direction of C, 

eventually we'll pass C”. This can not be proven from the other axioms. (See 

Figure 6) 
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Figure 6:  Mark off segment AB in the direction of C 

 

Euclid
22

 may forget when it given a line, there must be two points on it, and there 

exists at least one point not on the line. He should have stated the "self-evident" 

assumptions. Modern mathematicians perceive that the Fifth Axiom of Geometry is 

too complex, and seemed derivable from the other postulates.  

 Wallis, J.
23

 looks for simpler postulates to assume and try to proving the 

parallel postulate from those by simple postulate e.g. given a ABC and any line 

segment DE, there exists a triangle with DE as a side which is similar to ABC. In 

other words, similarity preserves shape. Size, shape, and location are independent 

of each other and this simpler postulate allows derivation of Euclid's fifth postulate. 

Meanwhile, Saccheri and Lambert
24

 independently tried proving the parallel 

postulate by the reductio ad absurdum method. Their proof starts with "Neutral 

geometry" that is Euclidean geometry that excludes the parallel postulate. In the 

following figure (Figure 7), Saccheri and Lambert prove that ABC = DCB  

with the following procedure. It shows that ∆ ABD is congruent to ∆ ADC. Hence 

AC = BD so ∆ ABC is congruent to ∆ BCD. Therefore ABC = DCB. There 

                                                 
22
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will three possibilities : 1)  B =  C = 90 ; 2) B,  C > 90 (obtuse angle 

hypothesis) ; and 3) B, C < 90 (acute angle hypothesis). 

 

 

 

  

         └                ┘ 

          Figure 7: Neutral geometry 

 

Possibility one is equivalent to the parallel postulate; possibility two can be shown 

to be contradictory to Neutral geometry; and possibility three couldn't be proven 

contradictory. Saccheri and Lambert
25

 are repugnant to the nature of the straight 

line and space; and this was the discovery of non-Euclidean geometry.  

In the late 18th and early 19th century, three men became interested in the 

acute angle hypothesis. Bolyai, Gauss, and Zobachevsky took the negation of the 

parallel postulate as a postulate and added it to neutral geometry; and resulting 

that nothing contradictory followed. Negation
26

 of the Parallel Postulate states that 

there is at least one line l and one point p outside of l such that through p there are 

at least two lines which do not intersect l. This implies through any point outside 

of l, there are infinitely many lines parallel to l. This new geometry is called 

                                                 
25
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hyperbolic geometry; and that some theorems that are derivable from neutral 

geometry and the negation of the parallel postulate: 

 

Angles in a triangles sum to less than 180 degrees.  

Angles in a quadrilateral sum to less than 360 degrees.  

Rectangles do not exist.  

If two triangles are similar, then they are congruent-- size and shape are not 

independent. 

 

On the other hand, Riemann
27

 develops elliptical geometry where there are no 

parallel lines. Klein and Belttrami independently prove that there is no hope of 

contradiction between neutral geometry and the negation of the parallel postulate. 

If Euclidean geometry is consistent, it must also be true that no contradiction can 

occur in non-Euclidean geometry. Accordingly, one could model non-Euclidean 

geometry inside Euclidean geometry.  

 

B. The Road to Contemporary Mathematics 

The 17th century
28

, the period of the scientific revolution, witnesses the 

consolidation of Copernican heliocentric astronomy and the establishment of 

inertial physics in the work of Kepler, Galileo, Descartes, and Newton. This period 

is also one of intense activity and innovation in mathematics. Advances in 

numerical calculation, the development of symbolic algebra and analytic geometry, 

and the invention of the differential and integral calculus resulted in a major 

                                                 
27
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expansion of the subject areas of mathematics. By the end of the 17th century a 

program of research based in analysis had replaced classical Greek geometry at the 

centre of advanced mathematics. In the next century this program would continue 

to develop in close association with physics, more particularly mechanics and 

theoretical astronomy. The extensive use of analytic methods, the incorporation of 

applied subjects, and the adoption of a pragmatic attitude to questions of logical 

rigor distinguished the new mathematics from traditional geometry. 

1. The Invention of the Calculus  

In his treatise Geometria Indivisibilibus Continuorum (1635) Cavalieri
29

, 

formulates a systematic method for the determination of areas and volumes. 

Cavalieri
30

 thinks a plane strip can be thought of as infinitely many parallel 

indivisibles, etc; and he then described principle that, called then Cavalieri's 

principle, one can move indivisibles composing a figure independently of each 

other and thus recreate the figure. Cavalieri showed that these collections could be 

interpreted as magnitudes obeying the rules of Euclidean ratio theory (See Figure 

8) 
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Figure 8 : Area of figure 

 

Cavalieri
31

 produces two figures inside two parallel lines. If all lines 

parallel to two containing lines intersecting the two figures cut chords of equal 

lengths, then the areas of the two figures are the same. Cavalieri
32

 admits that his 

methods clearly could not be rigorous. He thinks that rigor is for philosophers, and 

mathematics is for scientists. According to Cavalieri’s, if two solids have equal 

altitudes and if sections made by planes parallel to the bases and of equal distance 

are always in a given ratio, then the solids' volumes are also in that ratio. The more 

effective instrument for scientific investigation to such problem that mathematics 

has ever produced, then is called calculus. As the mathematics of variability and 

change, calculus is the characteristic product of the scientific revolution.  

Calculus
33

 is properly the invention of two mathematicians, the German 

Gottfried Wilhelm Leibniz and the Englishman Isaac Newton. Both men published 

their researches in the 1680s, Leibniz in 1684 in the recently founded journal Acta 

Eruditorum and Newton in 1687 in his great treatise Principia Mathematica. The 

essential insight of Newton and Leibniz was to use Cartesian algebra to synthesize 

the earlier results and to develop algorithms that could be applied uniformly to a 

wide class of problems. The formative period of Newton's researches was from 

1665 to 1670, while Leibniz worked a few years later, in the 1670s. Their 

                                                 
31
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contributions differ in origin, development, and influence, and it is necessary to 

consider each man separately. Newton deals calculus with the analysis of motion.  

 

 

Figure 9: Locus of motion 

 

He views curves as the locus of motion of a point and believed that notions 

of motion and flow must be used when analyzing continua (Figure 9). He calls his 

discovery the method of fluxions in which curve was a mapping between abscissa 

and ordinates. Newton called fluents for variables and fluxions for rates of change; 

the moment of a fluent was the delta of a variable. On the other hand, Leibniz's 

notation:
dy

dx
, dy and dx are both very small that they are insignificant, however, 

their ratio is a number; thus ratios were stressed, not the individual components.  

 

 

 

 

 

   

0 
a 
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Figure  10:  Area of geometrical shape 

 

Calculation using modern calculus notation of the area of triangle in Fig. 10  

resulting 

2

0

1

2

a

Area of triangle x dx a   

In the late 18th century Bolzano and Cauchy
34

, instead of talking about 

infinitely small quantities, think of a sequence of smaller and smaller quantities 

approaching a number and define the Limit. Cauchy defines the Limit as, when the 

successive values attributed to a variable approach indefinitely a fixed value so as 

to end by differing from it as little as one wishes. This last is called the limit of all 

the others. Bolzano and Cauchy take care of that; in term of the applications of 

converging to a limit, Cauchy used limits in describing the notion of a derivative. 

Cauchy introduces the notion '

x 0

( ) ( )
( ) lim

f x x f x
f x

x 

 



, to indicate the 

continuity of function.  

2. Contemporary Mathematics 

Contemporary
35

, the major disciplines within mathematics arose out of the 

need to do calculations in commerce, to measure land and to predict astronomical 

events. These three needs can be roughly related to the broad subdivision of 

mathematics into the study of structure, space and change. The study of 

                                                 
34
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mathematical structure
36

 starts with numbers, firstly the familiar natural numbers 

and integers and their arithmetical operations, which are recorded in elementary 

algebra. 

The deeper properties of whole numbers
37

 are studied in number theory. 

The investigation of methods to solve equations leads to the field of abstract 

algebra, which, among other things, studies rings, fields and structures that 

generalize the properties possessed by the familiar numbers. The physically 

important concept of vector, is generalized to vector spaces and studied in linear 

algebra, belongs to the two branches of structure and space. The study of space
38

 

originates with geometry, first the Euclidean geometry and trigonometry of 

familiar three-dimensional space, but later also generalized to non-Euclidean 

geometries which play a central role in general relativity.  

The modern fields of differential geometry and algebraic geometry
39

 

generalize geometry in different directions. Differential geometry emphasizes the 

concepts of coordinate system, smoothness and direction, while in algebraic 

geometry geometrical objects are described as solution sets of polynomial 

equations. Group theory investigates the concept of symmetry abstractly and 

provides a link between the studies of space and structure. Topology connects the 

study of space and the study of change by focusing on the concept of continuity.  
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Understanding and describing change
40

 in measurable quantities is the 

common theme of the natural sciences, and calculus was developed as a most 

useful tool for doing just that. The central concept used to describe a changing 

variable is that of a function. Many problems lead quite naturally to relations 

between a quantity and its rate of change, and the methods to solve these are 

studied in the field of differential equations. The numbers
41

 used to represent 

continuous quantities are the real numbers, and the detailed study of their 

properties and the properties of real-valued functions is known as real analysis. 

The invention of analytic geometry
42

 is the most important mathematical 

development of the 17th century. Originating in the work of the French 

mathematicians Viète, Fermat, and Descartes, it had by the middle of the century 

established itself as a major program of mathematical research. Two tendencies in 

contemporary mathematics stimulate the rise of analytic geometry. The first is an 

increased interest in curves, resulting in part from the recovery and Latin 

translation of the classical treatises of Apollonius, Archimedes, and Pappus, and in 

part from the increasing importance of curves in such applied fields as astronomy, 

mechanics, optics, and stereometry. The second is the emergence a century earlier 

of an established algebraic practice in the work of the Italian and German 

algebraists and its subsequent shaping into a powerful mathematical tool. 

The scientific revolution had affected to mathematics a major program of 

research in analysis and mechanics. The period from 1700 to 1800 is witnessed as 
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the century of analysis. It covers ordinary and partial differential equations, 

calculus of variations, infinite series, and differential geometry. The applications of 

analysis are also varied, including the theory of the vibrating string, particle 

dynamics, the theory of rigid bodies, the mechanics of flexible and elastic media, 

and the theory of compressible and incompressible fluids. During the period 1600–

1800 significant advances occur in the theory of equations, foundations of 

Euclidean geometry, number theory, projective geometry, and probability theory.  

 Most of the powerful abstract mathematical theories in use today originate 

in the 19th century. Mathematics grew so much during this period. This period 

comes together through the pioneering work of Georg Cantor on the concept of a 

set. He began to discover unexpected properties of sets. For example, he describes 

that the set of all algebraic numbers and the set of all rational numbers are 

countable in the sense that there is a one-to-one correspondence between the 

integers and the members of each of these sets. It means that any member of the set 

of rational numbers, no matter how large, there is always a unique integer it may 

be placed in correspondence with. But, more surprisingly, he could also show that 

the set of all real numbers is not countable. So, although the set of all integers and 

the set of all real numbers are both infinite, the set of all real numbers is a strictly 

larger infinity. This is incomplete contrast to the prevailing orthodoxy, which 

proclaims that infinite could only mean “larger than any finite amount.” 

 Frege's proposals goes in the direction of a reduction of all mathematics to 

logic. He hopes that every mathematical term could be defined precisely and 

manipulated according to agreed logical rules of inference. This, the logicist 
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program, was dealt an unexpected blow by the English mathematician and 

philosopher Bertrand Russell in 1902, who pointed out unexpected complications 

with the naive concept of a set. Nothing seems to preclude the possibility that some 

sets are elements of themselves while others are not. In the 1920s Hilbert put 

forward his most detailed proposal for establishing the validity of mathematics. 

According to his theory of proofs, everything is to be put into an axiomatic form, 

allowing the rules of inference to be only those of elementary logic, and only those 

conclusions that could be reached from this finite set of axioms and rules of 

inference were to be admitted. He proposes that a satisfactory system would be one 

which was consistent, complete, and decidable. By consistent Hilbert meant that it 

should be impossible to derive both a statement and its negation; by complete, that 

every properly written statement should be such that either it or its negation was 

derivable from the axioms; by decidable, that one should have an algorithm which 

determines of any given statement whether it or its negation is provable.  

In 1931 Kurt Gödel
43

 shows that there is no system of Hilbert's type within 

which the integers could be defined and which is both consistent and complete. 

He
44

 proves that no such decision procedure is possible for any system of logic 

made up of axioms and propositions sufficiently sophisticated to encompass the 

kinds of problems that mathematicians work on every day. Accordingly, if we 

assume that the mathematical system is consistent, then we can show that it is 

incomplete. Gödel and Alan Turing show that decidability was also unattainable. 
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In 1963, Paul Cohen exposes resolution of the continuum hypothesis, which was 

Cantor's conjecture that the set of all subsets of the rational numbers was of the 

same size as the set of all real numbers. This turns out to be independent of the 

usual axioms for set theory, so there are set theories and therefore types of 

mathematics in which it is true and others in which it is false. 

According to Hempel C.G. (2001), every concept of mathematics can be 

defined by means of Peano's three primitives, and every proposition of 

mathematics can be deduced from the five postulates enriched by the definitions of 

the non-primitive terms. These deductions can be carried out, in most cases, by 

means of nothing more than the principles of formal logic. He perceived that the 

proof of some theorems concerning real numbers, however, requires one 

assumption which is not usually included among the latter; this is the so-called 

axiom of choice in which it asserts that given a class of mutually exclusive classes, 

none of which is empty, there exists at least one class which has exactly one 

element in common with each of the given classes. Peano’s simple arithmetic 

including addition can be defined and many theorems proven by assuming : 

1. a number called 0 exists  

2. every number X has a successor called inc(X)  

3. X+0 = X  

4. inc(X) + Y = X + inc(Y)  

Using these axioms, and defining the customary short names 1, 2, 3, and so on for 

inc(0), inc(inc(0)), inc(inc(inc(0))) respectively, we can show the following :  
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a. inc(X) = X + 1 and 1 + 2 = 1 + inc(1)    Expansion of abbreviation (2 = 

inc(1)) 

b. 1 + 2 = inc(1) + 1     Axiom 4 

c. 1 + 2 = 2 + 1          Abbreviation (2 = inc(1)) 

d. 1 + 2 = 2 + inc(0)     Expansion of abbreviation (1 = inc(0)) 

e. 1 + 2 = inc(2) + 0     Axiom 4 

f. 1 + 2 = 3             Axiom 3 and Use of abbreviation(inc(2=3)
45

 

 

 Structuralism
46

 provides a more holistic view of mathematics and science 

that can account for the interaction of these disciplines. Any structure
47

 can be a 

mathematical structure if mathematicians, qua mathematicians, study it qua 

structure; the difference lies more in the way that structures are presented and 

studied. Accordingly, mathematical structures are described abstractly i.e. 

independent of what the structures may be structures of, and studied deductively. 

Bell
48

 illustrates that the relationships between mathematical structures as 

embodied in the network of morphisms came to be seen as more significant than 

the objects which constitute the elements of the structures. The notion
49

 of identity 

appropriate for structures is not set-theoretic equality but isomorphism.  
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